Input / Output ์ ๋ฆฌ
- $N_p$ : ์์ธกํ๋ ค๋ ๋ฏธ๋ ์ถ๋ ฅ ์
- $N_c$ : ์์ธกํ๋ ค๋ ๋ฏธ๋ ์ ์ด์
๋ ฅ ์
- ๊ฒฝ๋ก ์ถ์ ์ ๊ฒฝ์ฐ, $N_p$๊ฐ ์ ์ tracking ํ๊ธฐ ์ํ $N_c$๊ฐ ์ ์ด ๋ช ๋ น...
- Control Input
- $\Delta u(k), \Delta u(k+1), \Delta u(k+2), \cdots, \Delta u(k + N_{c} - 1)$
- Output
- $y(k), y(k+1), \cdots, y(k+N_{p})$
- $y(k) = Cx(k)$ ์ด๋ฏ๋ก $y(k+1) = Cx(k+1), y(k+2) = Cx(k+2), \cdots$ ๋ก ํํ ๊ฐ๋ฅ
- ๋ฐ๋ผ์ ์์ธก state $x(k+1), x(k+2), \cdots, x(k+N_{p})$๋ฅผ ๊ตฌํ๋ฉด ๋จ
State variable ๊ตฌํ๊ธฐ
$$x(k+1) = Ax(k) + B\Delta u(k)$$$$\begin{matrix} x(k+2) &=& Ax(k+1) + B\Delta u(k+1) \ &=& A^{2}x(k) + AB\Delta u(k) + B\Delta u(k+1) \end{matrix}$$$$ \begin{matrix} x(k+3) &=& Ax(k+2) + B\Delta u(k+2) \ &=& A^{3}x(k) + A^{2}B\Delta u(k) + AB\Delta u(k+1) + B\Delta u(k+2) \end{matrix}$$$$\begin{matrix} x(k + N_{p}) &=& A^{N_p}x(k) + A^{N_{p-1}}B\Delta u(k) + A^{N_{p-2}}B\Delta u(k+1) + \cdots + A^{N_{p}- N_c}B\Delta u(k + N_{c}- 1) \end{matrix}$$
- ์ผ ๋, $y(k) = Cx(k)$ ์ด๋ฏ๋ก $C$ ๋ง ๊ณฑํ๋ฉด ์ถ๋ ฅ
$$y(k+1) = CAx(k) + CB\Delta u(k)$$$$\begin{matrix} y(k+2) &=& CAx(k+1) + CB\Delta u(k+1) \ &=& CA^{2}x(k) + CAB\Delta u(k) + CB\Delta u(k+1) \end{matrix}$$$$ \begin{matrix} y(k+3) &=& CAx(k+2) + CB\Delta u(k+2) \ &=& CA^{3}x(k) + CA^{2}B\Delta u(k) + CAB\Delta u(k+1) + CB\Delta u(k+2) \end{matrix}$$$$\begin{matrix} y(k + N_{p}) &=& CA^{N_p}x(k) + CA^{N_{p-1}}B\Delta u(k) + CA^{N_{p-2}}B\Delta u(k+1) + \cdots + CA^{N_{p}- N_c}B\Delta u(k + N_{c}- 1) \end{matrix}$$
- $y(k + N_{p})= Y$, $CA^{N_{p}\cdots N_{p}-N_{c}} = F$ , $\Delta u(k + (0 \cdots N_{c}-1)) = \Delta U$ ๋ก ๋์ผ๋ฉด
$$Y = Fx(k) + \Phi \Delta U$$ $$F = \begin{bmatrix}CA \ CA^{2}\ CA^{3}\ \vdots \ CA^{N_{p}- N_c} \end{bmatrix},
\Phi = \begin{bmatrix}
CB & 0 & 0 & \cdots & 0 \\
CAB & CB & 0 & \cdots & 0 \\
CA^{2}B & CAB & CB & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
CA^{N_{p}-1}B & CA^{N_{p}-2}B & CA^{N_{p}-3}B & \cdots & 0\end{bmatrix}$$
- ํ์ฌ ์ ๋ณด $x(k)$ ๋ฅผ ์๋ค๋ฉด, ์ ์ด์ ๋ ฅ $\Delta U$ ๋ฅผ ๋ฃ์์ ๋ ๋ฏธ๋ ์ถ๋ ฅ์ ์ ์ ์๋ค!
- $N_c$ ๊ฐ ์ ๋ ฅ์ "design" ํด์ $N_p$ ๊ฐ ์ถ๋ ฅ์ ๋ผ ์ ์์
- ๋ฐ๋๋ก ์ด๋ค ์ถ๋ ฅ์ ์ํ ์ ๋ ฅ์ ์ค๊ณํ ์๋ ์์