[MPC] 2. ์ƒํƒœ ๊ณต๊ฐ„ ๋ฐฉ์ •์‹ ์œ ๋„

2024. 3. 6. 16:02ยท๐Ÿฌ ML & Data/๐Ÿ“ฎ Reinforcement Learning
728x90

MPC ์ƒํƒœ ๊ณต๊ฐ„ ๋ฐฉ์ •์‹ ์œ ๋„

  • ์ƒํƒœ๊ณต๊ฐ• ๋ฐฉ์ •์‹ + LTI(Linear TimeINvariant, ์„ ํ˜• ์‹œ๊ฐ„ ๋ถˆ๋ณ€ ์‹œ์Šคํ…œ)์˜ ๊ฒฝ์šฐ => Continuous-time state-space model
    • ์ƒํƒœ ๋ฐฉ์ •์‹ : $$\bar{x} = Ax + Bu$$
    • ์ถœ๋ ฅ ๋ฐฉ์ •์‹ : $$y = Cx$$
  • MPC๋Š” discrete ํ•œ ํ™˜๊ฒฝ => Discrete-time state-space model
    • ์ƒํƒœ ๋ฐฉ์ •์‹ : $$x(k+1) = A_{d}x(k) + B_{d}u(k)$$
    • ์ถœ๋ ฅ ๋ฐฉ์ •์‹ : $$y(k) = C_{d}x(k)$$
  • MPC ๊ธฐ๋ณธ ๋ชจ๋ธ์€ Discrete-time aumented state-space model
    • ์ƒํƒœ ๋ณ€์ˆ˜ ๋Œ€์‹  ์ƒํƒœ ๋ณ€์ˆ˜์˜ ๋ณ€ํ™”๋Ÿ‰ $\Delta x$ ์‚ฌ์šฉ
    • ์ƒํƒœ ๋ฐฉ์ •์‹
      • $${x(k+1) - x(k) = A_{d}(x(k)- x(k-1)) + B_{d}(u(k) - u(k-1))}$$ $$\Delta x(k+1) = A_{d}\Delta x(k) + B_{d}\Delta u(k)$$
    • ์ถœ๋ ฅ ๋ฐฉ์ •์‹
      • $$y(k+1) - y(k) = C_{d}(x(k+1) - x(k)) = C_{d}\Delta x(k+1)$$$$\Delta x(k+1)= A_{d}\Delta x(k) + B_{d}\Delta u(k) \text{์ด๋ฏ€๋กœ}$$$$y(k+1) - y(k) = C_{d}(A_{d}\Delta x(k) + B_{d}\Delta u(k))$$$$y(k+1) = y(k)+ C_{d}A_{d}\Delta x(k) + C_{d}B_{d}\Delta u(k)$$
      • Matrix ํ˜•ํƒœ๋กœ ์ •๋ฆฌ
        • $$\begin{bmatrix}\Delta x(k+1) \ y(k+1) \end{bmatrix} =
          \begin{bmatrix} A_{d}& 0 \\ C_{d}A_{d} & 1 \end{bmatrix}
          \begin{bmatrix} \Delta x(k) \ y(k) \end{bmatrix} +
          \begin{bmatrix} B_{d} \ C_{d}B_{d} \end{bmatrix} \Delta u(k)$$$$y(k) = \begin{bmatrix} 0 & 1\end{bmatrix} \begin{bmatrix} \Delta x(k) \\ y(k) \end{bmatrix}$$
        • ๋‹จ ์ƒํƒœ ๋ณ€์ˆ˜ $x$๋Š” ์ƒํƒœ ๋ณ€์ˆ˜์˜ ๋ณ€ํ™”๋Ÿ‰๊ณผ ์ถœ๋ ฅ์œผ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ์Œ
          $$ x(k) = \begin{bmatrix} \Delta x(k)^{T} & y(k)^{T} \end{bmatrix} $$
728x90
์ €์ž‘์žํ‘œ์‹œ ๋น„์˜๋ฆฌ ๋ณ€๊ฒฝ๊ธˆ์ง€ (์ƒˆ์ฐฝ์—ด๋ฆผ)

'๐Ÿฌ ML & Data > ๐Ÿ“ฎ Reinforcement Learning' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[MPC] 4. Optimal Control(1) - LQR๊ณผ Taylor Series(ํ…Œ์ผ๋Ÿฌ ๊ธ‰์ˆ˜)  (1) 2024.03.06
[MPC] 3. ์ƒํƒœ(state)์™€ ์ถœ๋ ฅ(output) ์˜ˆ์ธกํ•ด๋ณด๊ธฐ  (0) 2024.03.06
[MPC] 1. Model Predictive Control Intro  (0) 2024.03.06
[๊ฐ•ํ™”ํ•™์Šต] Dealing with Sparse Reward Environments - ํฌ๋ฐ•ํ•œ ๋ณด์ƒ ํ™˜๊ฒฝ์—์„œ ํ•™์Šตํ•˜๊ธฐ  (2) 2023.10.23
[๊ฐ•ํ™”ํ•™์Šต] DDPG(Deep Deterministic Policy Gradient)  (0) 2023.10.16
'๐Ÿฌ ML & Data/๐Ÿ“ฎ Reinforcement Learning' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
  • [MPC] 4. Optimal Control(1) - LQR๊ณผ Taylor Series(ํ…Œ์ผ๋Ÿฌ ๊ธ‰์ˆ˜)
  • [MPC] 3. ์ƒํƒœ(state)์™€ ์ถœ๋ ฅ(output) ์˜ˆ์ธกํ•ด๋ณด๊ธฐ
  • [MPC] 1. Model Predictive Control Intro
  • [๊ฐ•ํ™”ํ•™์Šต] Dealing with Sparse Reward Environments - ํฌ๋ฐ•ํ•œ ๋ณด์ƒ ํ™˜๊ฒฝ์—์„œ ํ•™์Šตํ•˜๊ธฐ
darly213
darly213
ํ˜ธ๋ฝํ˜ธ๋ฝํ•˜์ง€ ์•Š์€ ๊ฐœ๋ฐœ์ž๊ฐ€ ๋˜์–ด๋ณด์ž
  • darly213
    ERROR DENY
    darly213
  • ์ „์ฒด
    ์˜ค๋Š˜
    ์–ด์ œ
    • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (97)
      • ๐Ÿฌ ML & Data (50)
        • ๐ŸŒŠ Computer Vision (2)
        • ๐Ÿ“ฎ Reinforcement Learning (12)
        • ๐Ÿ“˜ ๋…ผ๋ฌธ & ๋ชจ๋ธ ๋ฆฌ๋ทฐ (8)
        • ๐Ÿฆ„ ๋ผ์ดํŠธ ๋”ฅ๋Ÿฌ๋‹ (3)
        • โ” Q & etc. (5)
        • ๐ŸŽซ ๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹ (20)
      • ๐Ÿฅ Web (21)
        • โšก Back-end | FastAPI (2)
        • โ›… Back-end | Spring (5)
        • โ” Back-end | etc. (9)
        • ๐ŸŽจ Front-end (4)
      • ๐ŸŽผ Project (8)
        • ๐ŸงŠ Monitoring System (8)
      • ๐Ÿˆ Algorithm (0)
      • ๐Ÿ”ฎ CS (2)
      • ๐Ÿณ Docker & Kubernetes (3)
      • ๐ŸŒˆ DEEEEEBUG (2)
      • ๐ŸŒ  etc. (8)
      • ๐Ÿ˜ผ ์‚ฌ๋‹ด (1)
  • ๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

    • ํ™ˆ
    • ๋ฐฉ๋ช…๋ก
    • GitHub
    • Notion
    • LinkedIn
  • ๋งํฌ

    • Github
    • Notion
  • ๊ณต์ง€์‚ฌํ•ญ

    • Contact ME!
  • 250x250
  • hELLOยท Designed By์ •์ƒ์šฐ.v4.10.3
darly213
[MPC] 2. ์ƒํƒœ ๊ณต๊ฐ„ ๋ฐฉ์ •์‹ ์œ ๋„
์ƒ๋‹จ์œผ๋กœ

ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”