728x90
MPC ์ํ ๊ณต๊ฐ ๋ฐฉ์ ์ ์ ๋
- ์ํ๊ณต๊ฐ ๋ฐฉ์ ์ + LTI(Linear TimeINvariant, ์ ํ ์๊ฐ ๋ถ๋ณ ์์คํ
)์ ๊ฒฝ์ฐ => Continuous-time state-space model
- ์ํ ๋ฐฉ์ ์ : $$\bar{x} = Ax + Bu$$
- ์ถ๋ ฅ ๋ฐฉ์ ์ : $$y = Cx$$
- MPC๋ discrete ํ ํ๊ฒฝ => Discrete-time state-space model
- ์ํ ๋ฐฉ์ ์ : $$x(k+1) = A_{d}x(k) + B_{d}u(k)$$
- ์ถ๋ ฅ ๋ฐฉ์ ์ : $$y(k) = C_{d}x(k)$$
- MPC ๊ธฐ๋ณธ ๋ชจ๋ธ์ Discrete-time aumented state-space model
- ์ํ ๋ณ์ ๋์ ์ํ ๋ณ์์ ๋ณํ๋ $\Delta x$ ์ฌ์ฉ
- ์ํ ๋ฐฉ์ ์
- $${x(k+1) - x(k) = A_{d}(x(k)- x(k-1)) + B_{d}(u(k) - u(k-1))}$$ $$\Delta x(k+1) = A_{d}\Delta x(k) + B_{d}\Delta u(k)$$
- ์ถ๋ ฅ ๋ฐฉ์ ์
- $$y(k+1) - y(k) = C_{d}(x(k+1) - x(k)) = C_{d}\Delta x(k+1)$$$$\Delta x(k+1)= A_{d}\Delta x(k) + B_{d}\Delta u(k) \text{์ด๋ฏ๋ก}$$$$y(k+1) - y(k) = C_{d}(A_{d}\Delta x(k) + B_{d}\Delta u(k))$$$$y(k+1) = y(k)+ C_{d}A_{d}\Delta x(k) + C_{d}B_{d}\Delta u(k)$$
- Matrix ํํ๋ก ์ ๋ฆฌ
- $$\begin{bmatrix}\Delta x(k+1) \ y(k+1) \end{bmatrix} =
\begin{bmatrix} A_{d}& 0 \\ C_{d}A_{d} & 1 \end{bmatrix}
\begin{bmatrix} \Delta x(k) \ y(k) \end{bmatrix} +
\begin{bmatrix} B_{d} \ C_{d}B_{d} \end{bmatrix} \Delta u(k)$$$$y(k) = \begin{bmatrix} 0 & 1\end{bmatrix} \begin{bmatrix} \Delta x(k) \\ y(k) \end{bmatrix}$$ - ๋จ ์ํ ๋ณ์ $x$๋ ์ํ ๋ณ์์ ๋ณํ๋๊ณผ ์ถ๋ ฅ์ผ๋ก ์ด๋ฃจ์ด์ ธ ์์
$$ x(k) = \begin{bmatrix} \Delta x(k)^{T} & y(k)^{T} \end{bmatrix} $$
- $$\begin{bmatrix}\Delta x(k+1) \ y(k+1) \end{bmatrix} =
728x90