[๋ผ์ดํŠธ ๋”ฅ๋Ÿฌ๋‹] n. Backpropagation ์ˆ˜์‹ ํ’€์ด ๋ฐ ๊ฒ€์ฆ
ยท
๐Ÿฌ ML & Data/๐Ÿฆ„ ๋ผ์ดํŠธ ๋”ฅ๋Ÿฌ๋‹
์ถœ์ฒ˜: https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ A Step by Step Backpropagation Example Background Backpropagation is a common method for training a neural network. There is no shortage of papers online that attempt to explain how backpropagation works, but few that include an example… mattmazur.com feed forward ๊ณ„์‚ฐ 1. h1 ๊ตฌํ•˜๊ธฐ $$net_{h1} = 0.05 * 0.15 + 0.1 * 0.2 + 0.35..
[๋ผ์ดํŠธ ๋”ฅ๋Ÿฌ๋‹] 1. ๋„“์€ ์‹œ๊ฐ์œผ๋กœ ๋ณด๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๊ฐœ๊ด„
ยท
๐Ÿฌ ML & Data/๐Ÿฆ„ ๋ผ์ดํŠธ ๋”ฅ๋Ÿฌ๋‹
2022๋…„ 11์›” Chat GPT๊ฐ€ ๋Œ€์ค‘์ ์œผ๋กœ ๊ต‰์žฅํžˆ ๋„“๊ฒŒ ์•Œ๋ ค์ง€๋ฉด์„œ ์„œ์„œํžˆ ๋ถ์ด ์˜ค๊ณ  ์žˆ๋˜ ์ธ๊ณต์ง€๋Šฅ ์‹œ์žฅ์ด ๊ทธ์•ผ๋ง๋กœ ์ „์„ฑ๊ธฐ๋ฅผ ๋งž์ดํ–ˆ๋‹ค๋Š” ์ƒ๊ฐ์ด ๋“œ๋Š” ์š”์ฆ˜์ž…๋‹ˆ๋‹ค. LLM(Large Language Model) ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ CV(Computer Vision) ๋ถ„์•ผ์—์„œ๋Š” ์ €์ž‘๊ถŒ ๋ฌธ์ œ๊ฐ€ ๋Œ€๋‘๋˜๊ณ  ์žˆ๊ธฐ๋Š” ํ•˜์ง€๋งŒ ์‚ฌ์ง„๊ณผ ๊ทธ๋ฆผ์ฒด๋ฅผ ํ•™์Šต์‹œ์ผœ ๊ทธ๋ฆผ์ฒด๋ฅผ ์ž…์€ ์ƒˆ๋กœ์šด ๊ทธ๋ฆผ์„ ๋งŒ๋“ค์–ด๋‚ด๊ณ , ์Œ์„ฑํ•ฉ์„ฑ ๋ถ„์•ผ์—์„œ๋Š” ์ธ๊ณต์ง€๋Šฅ์„ ํ™œ์šฉํ•ด TTS๊ฐ€ ๋…ธ๋ž˜๋ฅผ ๋ถ€๋ฅด๊ฒŒ ํ•˜๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. ๋ˆˆ์— ๋ณด์ด๋Š” ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๋Š” ์œ„์™€ ๊ฐ™์€ ๋ถ„์•ผ๋ฅผ ์ œ์™ธํ•˜๊ณ ๋„ ์ธ๊ณต์ง€๋Šฅ์„ ํ†ตํ•œ ์ด์ƒํƒ์ง€ ์†”๋ฃจ์…˜, ๊ฐ•ํ™”ํ•™์Šต์„ ํ™œ์šฉํ•œ ๊ฒŒ์ž„ ๋ด‡(Bot) ์ƒ์„ฑ ๋“ฑ ์•„์ง ์ €๋„ ์™„๋ฒฝํžˆ ์“ฐ์ž„์„ ๋‹ค ์•Œ์ง€ ๋ชปํ•˜๋Š” ๋ฌด๊ถ๋ฌด์ง„ํ•œ ๋ถ„์•ผ์—์„œ ๋”ฅ๋Ÿฌ๋‹์ด ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฒˆ ํฌ์ŠคํŒ…์—์„œ๋Š” AI๋ฅผ ๊ณต๋ถ€ํ•˜๊ธฐ๋กœ ..
[๋ผ์ดํŠธ ๋”ฅ๋Ÿฌ๋‹] 0. Intro
ยท
๐Ÿฌ ML & Data/๐Ÿฆ„ ๋ผ์ดํŠธ ๋”ฅ๋Ÿฌ๋‹
์ œ ๋ธ”๋กœ๊ทธ์—์„œ ์™ ์ง€๋Š” ๋ชจ๋ฅด๊ฒ ์ง€๋งŒ ๊พธ์ค€ํžˆ ์‚ฌ๋ž‘๋ฐ›์•„์˜จ ๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹ ์‹œ๋ฆฌ์ฆˆ๋ฅผ ์“ด์ง€๋„ ๋ฒŒ์จ 3๋…„ ๋ฐ˜์ด ์ง€๋‚ฌ์Šต๋‹ˆ๋‹ค. ์ฒ˜์Œ ์ด ์‹œ๋ฆฌ์ฆˆ๋ฅผ ์“ธ ๋•Œ ์ €๋Š” ์ด์ œ ๋ง‰ ์ปดํ“จํ„ฐ๊ณตํ•™ 1ํ•™๋…„ ๊ณผ์ •์„ ๋งˆ์นœ ํ•™์ƒ์ด์—ˆ๊ณ , ์ž๋ฃŒ๊ตฌ์กฐ๋ฉฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋„ ๋ชจ๋ฅด๋Š” ์ฃผ์ฃผ์ฃผ์ฃผ์ฃผ๋‹ˆ์–ด ๊ฐœ๋ฐœ์ž ์‹œ์ ˆ์ด์—ˆ์Šต๋‹ˆ๋‹ค. ๋•Œ๋ฌธ์— ์ œ๊ฐ€ ๋ด๋„ ‘์•„, ์ด ๋…€์„์ด ์ดํ•ด๋ฅผ ๋ชปํ•˜๊ณ  ์ผ๊ตฌ๋‚˜….’ ํ•˜๋Š” ๋ถ€๋ถ„๋“ค์ด ๋ถ„๋ช… ์กด์žฌํ•ฉ๋‹ˆ๋‹ค. 3๋…„ ๋ฐ˜์ด ์ง€๋‚ฌ๊ณ , ์ €๋Š” 8๊ฐœ์›” ์ „์— ํ•™์‚ฌ ์กธ์—…์„ ํ–ˆ์œผ๋ฉฐ, ๋จธ์‹ ๋Ÿฌ๋‹ ์—”์ง€๋‹ˆ์–ด ๊ฒธ ์ด๊ฒƒ์ €๊ฒƒ ๊ฐœ๋ฐœ์ž๋กœ ๊ฒฝํ—˜์„ ์Œ“์€์ง€๋„ 1๋…„์ด ์กฐ๊ธˆ ๋„˜์—ˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์‹ค ์•„์ง๋„ ์•„๋Š” ๊ฒŒ ๋งŽ๋‹ค๊ณ  ๋Š๊ปด์ง€์ง€๋Š” ์•Š์Šต๋‹ˆ๋‹ค๋งŒ, ์ €๋•Œ์˜ ์ €๋ณด๋‹ค๋Š” ๋ญ๊ฐ€ ๋˜์—ˆ๋“  ๋‚˜์€ ๊ฒƒ๋„ ์‚ฌ์‹ค์ž…๋‹ˆ๋‹ค. ์ด์ œ ํ•œ ์ฃผ์ฃผ๋‹ˆ์–ด ๊ฐœ๋ฐœ์ž์ฏค์€ ๋๊ฒ ์ฃ ? ๊ทธ๋ฆฌ๊ณ  ๋‹น์‹œ์˜ ๋…€์„์€ ๋ชฐ๋ž๊ฒ ์ง€๋งŒ ๋‚ด๋…„ ํ›„๊ธฐ ๋Œ€ํ•™์› ์ง€์›์„ ์—ผ๋‘์— ๋‘๊ณ  ์žˆ๋Š” ๋งŒ..