deep deterministic policy gradient
[강화학습] DDPG(Deep Deterministic Policy Gradient)
DQN의 차원의 저주 문제(고차원 action을 다루는 경우 연산 속도가 느려지고 memory space를 많이 요함)를 off-policy actor critic 방식으로 풀어낸다. 기존 DQN 방식의 insight들에 batch normalization replay buffer target Q network Actor-critic 파라미터화 된 actor function을 가짐 actor function : state에서 특정 action으로 mapping하여 현재 policy를 지정 policy gradient 방식으로 학습 여기에서 J가 Objective Function(목표함수) actor function이 목표 함수를 gradient asent로 최대화→ 이 때의 policy parameter..