모델 예측 제어
[MPC] 4. Optimal Control(1) - LQR과 Taylor Series(테일러 급수)
optimal control 기초 - LQR(Linear Quadratic Regulator) LQR이 기초라서 요걸로 system : $\dot x = f(x, u, t), x(t_{0}) = x_{0}$ cost function : $$V(x(t_{0}), u, t_{0}) = \int_{t_{0}}^{T} l[x(\tau), u(\tau), \tau]d\tau + m(x(T))$$ 위 cost function을 최소화하는 입력 $u^{*}(t), t_{0}\le t \le T$ 찾기 -> optimal control의 목적 principle of optimality 에 따라 한 해가 최적이면 sub problem의 해도 최적이 된다. $t_{0} < t < t_{1} < T$ 로 $t_{1}$ 추가..
[MPC] 3. 상태(state)와 출력(output) 예측해보기
Input / Output 정리 $N_p$ : 예측하려는 미래 출력 수 $N_c$ : 예측하려는 미래 제어입력 수 경로 추적의 경우, $N_p$개 점을 tracking 하기 위한 $N_c$개 제어 명령... Control Input $\Delta u(k), \Delta u(k+1), \Delta u(k+2), \cdots, \Delta u(k + N_{c} - 1)$ Output $y(k), y(k+1), \cdots, y(k+N_{p})$ $y(k) = Cx(k)$ 이므로 $y(k+1) = Cx(k+1), y(k+2) = Cx(k+2), \cdots$ 로 표현 가능 따라서 예측 state $x(k+1), x(k+2), \cdots, x(k+N_{p})$를 구하면 됨 State variable 구하기 $..