[라이트 머신러닝] Session 15. 커널 PCA를 이용한 비선형 매핑
·
🐬 ML & Data/🎫 라이트 머신러닝
C. 커널 PCA를 사용한 비선형 매핑여태까지 많은 머신 러닝 알고리즘은 입력 데이터가 선형적으로 구분이 가능하다는 가정을 합니다. 다른 알고리즘들-아달린, 로지스틱 회귀, SVM-은 선형적으로 완벽하게 분리되지 않는 이유를 잡음때문이라고 이야기합니다.실전에서는 더 자주 비선형 문제들을 맞닥뜨립니다. 이 경우에 항상 PCA나 LDA와 같은 차원 축소 기법이 최선이라고는 말할 수 없겠죠. 이제부터 알아볼 것은 PCA의 커널화 버전인 KPCA입니다. 1. 커널 함수와 커널 트릭앞선 세션에서 커널 SVM에 대해 이야기한 것을 떠올려보면, 비선형 문제를 풀기 위해 고차원 공간으로 데이터를 투영해 풀었습니다. k 고차원 부분 공간에 있는 샘플을 변환하기 위해 비선형 매핑 함수를 정의합니다. 이 함수를 d차원 보다..