[라이트 머신러닝] Session 3. 퍼셉트론 알고리즘의 수학적 정의
·
🐬 ML & Data/🎫 라이트 머신러닝
제목에 놀라신 분들이 있을 거라고 생각합니다! 지난 시간까지 정말 '라이트' 하게 머신러닝에 대한 넓고 얕은 지식을 배웠다면, 이제는 야금야금 실습에 들어갈 시간입니다. 일단은, 먼저 머신러닝에 대한 간단한 역사와 퍼셉트론 학습 알고리즘에 대해 먼저 소개해드리도록 하겠습니다. 1. 인공 뉴런의 수학적 정의 머신 러닝은 AI를 설계하기 위해 우리 생물의 뇌가 동작하는 방식을 이해하려는 시도입니다. 1943년 워런 맥컬록과 월터 피츠가 처음으로 간소화된 뉴런 개념(맥컬록 피츠 뉴런)을 발표했습니다. 맥컬록과 피츠는 신경 세포를 이진 출력을 만드는 논리회로로 표현했습니다. 수상돌기에 신호가 도착하면 세포체에 합쳐지고, 누적된 신호가 임계값을 넘으면 출력 신호가 생성되어 축삭돌기(말단)을 통해 전달됩니다. 이후..