[๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹] Session 6. ์‚ฌ์ดํ‚ท๋Ÿฐ ์ž…๋ฌธ!

2020. 2. 3. 20:35ยท๐Ÿฌ ML & Data/๐ŸŽซ ๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹
๋ชฉ์ฐจ
  1. 1. ๋ฐ์ดํ„ฐ ์ฃผ์ž…๊ณผ ํ‘œ์ค€ํ™”
  2. 2. ํ›ˆ๋ จ!
  3. 3. ๊ทธ๋ž˜ํ”„์™€ ๊ฒฐ์ •๊ฒฝ๊ณ„๋ฅผ ํ†ตํ•œ ์‹œ๊ฐํ™”
728x90

 ์ด๋ฒˆ ์„ธ์…˜์—์„œ๋Š” ์‚ฌ์ดํ‚ท๋Ÿฐ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ๋ฅผ ์ด์šฉํ•ด์„œ ํผ์…‰ํŠธ๋ก ์„ ํ›ˆ๋ จํ•ด๋ด„์œผ๋กœ์จ ์‚ฌ์ดํ‚ท๋Ÿฐ์„ ์‹œ์ž‘ํ•˜๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ์ด๋ฒˆ ์„ธ์…˜๋„ ์ „๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ €๋Š” Google Colab์œผ๋กœ ์‹ค์Šตํ•ฉ๋‹ˆ๋‹ค. Colab์—๋Š” ์ด๋ฏธ ์‚ฌ์ดํ‚ท๋Ÿฐ์ด ์„ค์น˜๋˜์–ด์žˆ์œผ๋ฏ€๋กœ ๋ณ„๋„์˜ ์„ค์น˜์—†์ด ์‚ฌ์šฉํ•˜์‹œ๋ฉด ๋ฉ๋‹ˆ๋‹ค!

https://colab.research.google.com

 

Google Colaboratory

 

colab.research.google.com

1. ๋ฐ์ดํ„ฐ ์ฃผ์ž…๊ณผ ํ‘œ์ค€ํ™”

 ์ด๋ฒˆ ์„ธ์…˜์—์„œ๋Š” ์„ธ์…˜ 4์™€ 5์—์„œ ๊ตฌํ˜„ํ•œ ๊ฒƒ๊ณผ ๋น„์Šทํ•œ ํผ์…‰ํŠธ๋ก  ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•  ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์‚ฌ์šฉํ•  ๋ถ“๊ฝƒ ๋ฐ์ดํ„ฐ ์…‹์€ ์ด๋ฏธ ์‚ฌ์ดํ‚ท๋Ÿฐ์— ํฌํ•จ๋˜์–ด์žˆ์œผ๋ฏ€๋กœ, ๋”ฐ๋กœ ๋‹ค์šด๋ฐ›์„ ํ•„์š”๋Š” ์—†์Šต๋‹ˆ๋‹ค. 

 ๊ฝƒ ์ƒ˜ํ”Œ ์ค‘์— ๊ฝƒ์ž… ๊ธธ์ด์™€ ๋„ˆ๋น„๋ฅผ ํ–‰๋ ฌ X์—, ๊ฝƒ ํ’ˆ์ข…์„ ๋ฒกํ„ฐ Y์— ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค.

from sklearn import datasets
import numpy as np

iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
print('class label', np.unique(y))

 

np.uniqueํ•จ์ˆ˜๋Š” iris.target์— ์žˆ๋Š” ์„ธ ๊ฐœ์˜ ๋ถ“๊ฝƒ ์ข…๋ฅ˜๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค. ๊ฒฐ๊ณผ๋กœ class label [0 1 2] ๋ผ๋Š” ๋‚ด์šฉ์ด ๋‚˜์˜ค๊ณ , ๊ฝƒ์˜ ๋ผ๋ฒจ์ด 0๊ณผ 1๊ณผ 2๋ผ๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์ฃ . ๊ฐ๊ฐ Iris-setasa, Iris-versicolor, Iris-virginica ์ž…๋‹ˆ๋‹ค. ์‚ฌ์ดํ‚ท๋Ÿฐ์˜ ํ•จ์ˆ˜์™€ ํด๋ž˜์Šค ๋ฉ”์†Œ๋“œ๋“ค์€ ๋ฌธ์ž์—ด ํ˜•ํƒœ์˜ ํด๋ž˜์Šค ๋ ˆ์ด๋ธ”๋“ค์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ๋‚˜๋ˆ„๋Š” ๋ฐ์— ์ •์ˆ˜ํ˜•ํƒœ(0, 1, 2์ฒ˜๋Ÿผ)๊ฐ€ ๊ถŒ์žฅ๋˜๋Š” ์ด์œ ๋Š” ์‹ค์ˆ˜๋ฅผ ํ”ผํ•  ์ˆ˜ ์žˆ๊ณ , ๋ฉ”๋ชจ๋ฆฌ ์˜์—ญ์ด ์ž‘๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 1, stratify = y)

print('label count of y: ', np.bincount(y))
print('label count of y_train: ', np.bincount(y_train))
print('label count of y_test: ', np.bincount(y_test))

 

์‚ฌ์ดํ‚ท๋Ÿฐ์˜ model_selection ๋ชจ๋“ˆ์˜ train_test_split ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•ด X์™€ y์˜ ๋ฐฐ์—ด์„ ๋žœ๋คํ•˜๊ฒŒ ๋‚˜๋ˆ„๊ณ , 30%๋Š” ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋กœ, 70%๋Š” ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ ๋‚˜๋ˆ„์–ด์ˆฉ๋‹ˆ๋‹ค. ๋ฐฐ์—ด์„ ๋žœ๋คํ•˜๊ฒŒ ๋‚˜๋ˆ„๋Š” ์ด์œ ๋Š” ๊ฐ„๋‹จํ•ฉ๋‹ˆ๋‹ค. ๋ฐฐ์—ด์„ ์„ž์ง€์•Š๊ณ  ํ˜ธ๋กœ๋ก ๋Œ๋ ค๋ฒ„๋ฆฌ๋ฉด ํ…Œ์ŠคํŠธ ๋ฐ์ดํ„ฐ๋Š” setasa๋งŒ์œผ๋กœ, ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋Š” ๋‹ค๋ฅธ ๋‘ ๊ฝƒ๋“ค๋งŒ์œผ๋กœ ๋‚˜๋‰  ์ˆ˜๊ฐ€ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿผ ํ•™์Šต์ด ์ œ๋Œ€๋กœ ์ด๋ฃจ์–ด์ง€์ง€ ์•Š๊ฒ ์ฃ ? 

stratify = y๋Š” ๊ณ„์ธตํ™”๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ๊ณ„์ธตํ™”๋Š” train_test_split ํ•จ์ˆ˜๊ฐ€ ๋‚˜๋ˆ ๋†“์€ ํด๋ž˜์Šค ๋ ˆ์ด๋ธ” ๋น„์œจ์„ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ์…‹๊ณผ ๋™์ผํ•˜๊ฒŒ ๋งž์ถ”๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค. numpy์— ์žˆ๋Š” bincountํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•˜๋ฉด ๋ฐฐ์—ด์— ์žˆ๋Š” ๊ฐ’์˜ ๋“ฑ์žฅ ํšŸ์ˆ˜๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์œ„ ์ฝ”๋“œ๋ฅผ ๋Œ๋ ค๋ณด์„ธ์š”!

์ด์ „ ์„ธ์…˜์—์„œ ์ด์•ผ๊ธฐํ–ˆ๋˜ ๊ฒƒ์ฒ˜๋Ÿผ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํŠน์„ฑ ์Šค์ผ€์ผ์„ ์กฐ์ •ํ•ด์ฃผ์–ด์•ผํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์„ ํ‘œ์ค€ํ™”๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋ฅผ ์ด์šฉํ•ด์„œ ํŠน์„ฑ์„ ํ‘œ์ค€ํ™”ํ•ด๋ด…์‹œ๋‹ค. 

from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

 

processing ๋ชจ๋“ˆ์—์„œ standard scaler ํด๋ž˜์Šค๋ฅผ ๋กœ๋“œํ•œ ๋‹ค์Œ ์ƒˆ๋กœ์šด ๊ฐ์ฒด standard scaler์„ sc๋กœ ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํ‘œ๊ธฐ์˜ ๊ฐ„ํŽธํ™”๋ฅผ ์œ„ํ•œ ์ž‘์—…์ด๊ธฐ๋„ ํ•ฉ๋‹ˆ๋‹ค. fit๋ฉ”์†Œ๋“œ๋ฅผ ์ด์šฉํ•ด์„œ ๊ฐ ํŠน์„ฑ ์ฐจ์›๋งˆ๋‹ค ์ƒ˜ํ”Œ ํ‰๊ท ๊ณผ ํ‘œ์ค€ํŽธ์ฐจ๋ฅผ ๊ณ„์‚ฐํ•˜๊ณ , ์ด ๋‘๊ฐ€์ง€๋ฅผ transform์—์„œ ํ›ˆ๋ จ์„ธํŠธ ํ‘œ์ค€ํ™”๋ฅผ ์‹ค์‹œํ•ฉ๋‹ˆ๋‹ค. ํ›ˆ๋ จ๊ณผ ํ…Œ์ŠคํŠธ ์„ธํŠธ์˜ ์ƒ˜ํ”Œ์ด ์„œ๋กœ ๊ฐ™์€ ๋น„์œจ๋กœ ํ‘œ์ค€ํ™”ํ•ด์ฃผ์ฃ .

2. ํ›ˆ๋ จ!

๋ฐ์ดํ„ฐ ํ‘œ์ค€ํ™” ์ดํ›„์— ๋“œ๋””์–ด! ํผ์…‰ํŠธ๋ก  ๋ชจ๋ธ์„ ํ›ˆ๋ จ์‹œํ‚ต๋‹ˆ๋‹ค. ์‚ฌ์ดํ‚ท๋Ÿฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋Œ€๋ถ€๋ถ„ OvR(one-versus-rest)๋ฐฉ์‹์„ ์ฑ„ํ‹ฑํ•˜์—ฌ ๋‹ค์ค‘๋ถ„๋ฅ˜๋ฅผ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ์„ธ ๊ฐœ์˜ ๋ถ“๊ฝƒ ํด๋ž˜์Šค๋ฅผ ํ•œ ๋ฒˆ์— ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋„ฃ์Šต๋‹ˆ๋‹ค.

from sklearn.linear_model import Perceptron

ppn = Perceptron(max_iter = 40, eta0 = 0.1, tol = 1e-3, random_state = 1)
ppn.fit(X_train_std, y_train)

 

์‚ฌ์ดํ‚ท๋Ÿฐ์— ํฌํ•จ๋œ ํผ์…‰ํŠธ๋ก ์€ ์•ž์„  ์„ธ์…˜์—์„œ ์ง์ ‘ ๊ตฌํ˜„ํ•œ ํผ์…‰ํŠธ๋ก ๊ณผ ๊ฑฐ์˜ ์œ ์‚ฌํ•ฉ๋‹ˆ๋‹ค. linear_model์—์„œ ํผ์…‰ํŠธ๋ก  ํด๋ž˜์Šค๋ฅผ ๋กœ๋“œํ•œ ๋‹ค์Œ, ppn ๋ณ€์ˆ˜์— ํผ์…‰ํŠธ๋ก ์„ ๋‹ด์Œ์œผ๋กœ์จ ๊ฐ์ฒด๋Ÿด ์ƒ์„ฑํ•œ ํ›„ fit ๋ฉ”์„œ๋“œ๋ฅผ ํ†ตํ•ด์„œ ํผ์…‰ํŠธ๋ก  ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•ฉ๋‹ˆ๋‹ค. eta๋Š” ํ•™์Šต๋ฅ ์„, max_iter์€ epoch๋ฅผ ๋œปํž™๋‹ˆ๋‹ค. tol์€ ์ข…๋ฃŒ์กฐ๊ฑด์„ ์ง€์ •ํ•˜๋‚˜ ์ด๋Š” ๊ฒฝ๊ณ ๋ฉ”์„ธ์ง€๋ฅผ ํ”ผํ•˜๊ธฐ ์œ„ํ•จ์ด๋ฏ€๋กœ ๊ตณ์ด ๊นŠ๊ฒŒ ์•Œ ํ•„์š”๋Š” ์—†์Šต๋‹ˆ๋‹ค.

๊ทธ ๋‹ค์Œ์€ predict ๋ฉ”์†Œ๋“œ๋ฅผ ์‚ฌ์šฉํ•ด์„œ ์˜ˆ์ธก์„ ๋งŒ๋“ค์–ด๋ƒ…๋‹ˆ๋‹ค. ์ฝ”๋“œ๋Š” ์•„๋ž˜์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค.

y_pred = ppn.predict(X_test_std)
print('์ž˜๋ชป ๋ถ„๋ฅ˜๋œ ์ƒ˜ํ”Œ ๊ฐœ์ˆ˜ : %d' %(y_test != y_pred).sum())

from sklearn.metrics import accuracy_score
print('์ •ํ™•๋„ : %.2f' %accuracy_score(y_test, y_pred))

์ด ๊ฒฝ์šฐ ์ž˜๋ชป ๋ถ„๋ฅ˜๋œ ์ƒ˜ํ”Œ์€ ํ•˜๋‚˜๊ฐ€ ๋˜๊ณ , ์ •ํ™•๋„๋Š” 0.98, 98%๊ฐ€ ๋‚˜์˜ต๋‹ˆ๋‹ค. ์‚ฌ์ดํ‚ท๋Ÿฐ์˜ ๋ถ„๋ฅ˜๊ธฐ(classfier)๋Š” ์ •ํ™•๋„๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” score ๋ฉ”์†Œ๋“œ๋ฅผ ๊ฐ–๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜๋ฉด ์•„๋ž˜์™€ ๊ฐ™์ด๋„ ์“ธ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

print('์ •ํ™•๋„ : %.2f' % ppn.score(X_test_std, y_test))

 

3. ๊ทธ๋ž˜ํ”„์™€ ๊ฒฐ์ •๊ฒฝ๊ณ„๋ฅผ ํ†ตํ•œ ์‹œ๊ฐํ™”

์•ž์„  ์„ธ์…˜์—์„œ ๋งŒ๋“  plot_decision_regions ํ•จ์ˆ˜๋ฅผ ์ด์šฉํ•ด์„œ ๊ทธ๋ž˜ํ”„๋ฅผ ์‹œ๊ฐํ™”ํ•˜๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. ๋‹ค๋ฅธ ์ ์€ ์—ฌ๊ธฐ์„œ๋Š” ์ƒ˜ํ”Œ์„ ์ž‘์€ ์›์œผ๋กœ ํ‘œ์‹œํ•˜๋Š” ๊ฒƒ ๋ฟ์ž…๋‹ˆ๋‹ค. 

from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt


def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):

    # ๋งˆ์ปค์™€ ์ปฌ๋Ÿฌ๋งต์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค.
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # ๊ฒฐ์ • ๊ฒฝ๊ณ„๋ฅผ ๊ทธ๋ฆฝ๋‹ˆ๋‹ค.
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                           np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], 
                    y=X[y == cl, 1],
                    alpha=0.8, 
                    c=colors[idx],
                    marker=markers[idx], 
                    label=cl, 
                    edgecolor='black')

    # ํ…Œ์ŠคํŠธ ์ƒ˜ํ”Œ์„ ๋ถ€๊ฐํ•˜์—ฌ ๊ทธ๋ฆฝ๋‹ˆ๋‹ค.
    if test_idx:
        X_test, y_test = X[test_idx, :], y[test_idx]

        plt.scatter(X_test[:, 0],
                    X_test[:, 1],
                    c='',
                    edgecolor='black',
                    alpha=1.0,
                    linewidth=1,
                    marker='o',
                    s=100, 
                    label='test set')

 

์ˆ˜์ •๋œ ํ•จ์ˆ˜์— ํ‘œ์‹œํ•œ ํ…Œ์ŠคํŠธ ์ƒ˜ํ”Œ ์ธ๋ฑ์Šค๋ฅผ ์•„๋ž˜์™€ ๊ฐ™์ด ์ง€์ •ํ•ด์ค๋‹ˆ๋‹ค. 

X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))

plot_decision_regions(X=X_combined_std, y=y_combined,
                      classifier=ppn, test_idx=range(105, 150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')

plt.tight_layout()
plt.show()

๊ทธ๋ฆผ 1. ๋งŒ๋“ค์–ด์ง„ ๊ทธ๋ž˜ํ”„

 

์ด๋ ‡๊ฒŒ ์œ„์™€๊ฐ™์ด ์˜ˆ์œ ์„ ํ˜•๊ฒฐ๊ณ„ ๊ทธ๋ž˜ํ”„๊นŒ์ง€ ์‚ฌ์ดํ‚ท๋Ÿฐ์„ ํ†ตํ•ด์„œ ์™„์„ฑํ•ด๋ณด์•˜์Šต๋‹ˆ๋‹ค. ์•ž์—์„œ๋„ ์ด์•ผ๊ธฐํ–ˆ๋“ฏ ๋ชจ๋“  ์ฝ”๋“œ๋ฅผ ์ดํ•ดํ•  ํ•„์š”๋Š” ์—†์œผ๋‚˜, ์–ธ๊ธ‰๋œ ํ•จ์ˆ˜์˜ ์“ฐ์ž„ ์ •๋„๋Š” ๊ผญ ์•Œ์•„๋‘์‹œ๋Š” ๊ฒƒ์„ ์ถ”์ฒœํ•ฉ๋‹ˆ๋‹ค! ๋‹ค์Œ ์‹œ๊ฐ„์—๋Š” ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€๋ฅผ ์†Œ๊ฐœํ•˜๊ณ , ๊ตฌํ˜„ํ•ด๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค! ๋‹ค์Œ ์‹œ๊ฐ„์— ๋ดฌ์š”! :)

 

728x90
์ €์ž‘์žํ‘œ์‹œ (์ƒˆ์ฐฝ์—ด๋ฆผ)

'๐Ÿฌ ML & Data > ๐ŸŽซ ๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€

[๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹] Session 8. ์ตœ๋Œ€ ๋งˆ์ง„ ๋ถ„๋ฅ˜์™€ ๋น„์„ ํ˜• ๋ฌธ์ œ ํ’€๊ธฐ  (0) 2020.02.07
[๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹]Session 7. ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€(logistic regression)  (0) 2020.02.05
[๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹] Session 5. ํผ์…‰ํŠธ๋ก ์˜ ๋ฉ”๊ฐ€ ์ง„ํ™”์™€ ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•!  (0) 2020.02.01
[๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹] Session 4. ํŒŒ์ด์ฌ์œผ๋กœ ํผ์…‰ํŠธ๋ก  ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌํ˜„ํ•˜๊ธฐ!  (0) 2020.01.25
[๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹] Session 3. ํผ์…‰ํŠธ๋ก  ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ˆ˜ํ•™์  ์ •์˜  (0) 2020.01.21
  1. 1. ๋ฐ์ดํ„ฐ ์ฃผ์ž…๊ณผ ํ‘œ์ค€ํ™”
  2. 2. ํ›ˆ๋ จ!
  3. 3. ๊ทธ๋ž˜ํ”„์™€ ๊ฒฐ์ •๊ฒฝ๊ณ„๋ฅผ ํ†ตํ•œ ์‹œ๊ฐํ™”
'๐Ÿฌ ML & Data/๐ŸŽซ ๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
  • [๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹] Session 8. ์ตœ๋Œ€ ๋งˆ์ง„ ๋ถ„๋ฅ˜์™€ ๋น„์„ ํ˜• ๋ฌธ์ œ ํ’€๊ธฐ
  • [๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹]Session 7. ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€(logistic regression)
  • [๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹] Session 5. ํผ์…‰ํŠธ๋ก ์˜ ๋ฉ”๊ฐ€ ์ง„ํ™”์™€ ๊ฒฝ์‚ฌํ•˜๊ฐ•๋ฒ•!
  • [๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹] Session 4. ํŒŒ์ด์ฌ์œผ๋กœ ํผ์…‰ํŠธ๋ก  ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ตฌํ˜„ํ•˜๊ธฐ!
darly213
darly213
ํ˜ธ๋ฝํ˜ธ๋ฝํ•˜์ง€ ์•Š์€ ๊ฐœ๋ฐœ์ž๊ฐ€ ๋˜์–ด๋ณด์ž
  • darly213
    ERROR DENY
    darly213
  • ์ „์ฒด
    ์˜ค๋Š˜
    ์–ด์ œ
    • ๋ถ„๋ฅ˜ ์ „์ฒด๋ณด๊ธฐ (97)
      • ๐Ÿฌ ML & Data (50)
        • ๐ŸŒŠ Computer Vision (2)
        • ๐Ÿ“ฎ Reinforcement Learning (12)
        • ๐Ÿ“˜ ๋…ผ๋ฌธ & ๋ชจ๋ธ ๋ฆฌ๋ทฐ (8)
        • ๐Ÿฆ„ ๋ผ์ดํŠธ ๋”ฅ๋Ÿฌ๋‹ (3)
        • โ” Q & etc. (5)
        • ๐ŸŽซ ๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹ (20)
      • ๐Ÿฅ Web (21)
        • โšก Back-end | FastAPI (2)
        • โ›… Back-end | Spring (5)
        • โ” Back-end | etc. (9)
        • ๐ŸŽจ Front-end (4)
      • ๐ŸŽผ Project (8)
        • ๐ŸงŠ Monitoring System (8)
      • ๐Ÿˆ Algorithm (0)
      • ๐Ÿ”ฎ CS (2)
      • ๐Ÿณ Docker & Kubernetes (3)
      • ๐ŸŒˆ DEEEEEBUG (2)
      • ๐ŸŒ  etc. (8)
      • ๐Ÿ˜ผ ์‚ฌ๋‹ด (1)
  • ๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

    • ํ™ˆ
    • ๋ฐฉ๋ช…๋ก
    • GitHub
    • Notion
    • LinkedIn
  • ๋งํฌ

    • Github
    • Notion
  • ๊ณต์ง€์‚ฌํ•ญ

    • Contact ME!
  • 250x250
  • hELLOยท Designed By์ •์ƒ์šฐ.v4.10.3
darly213
[๋ผ์ดํŠธ ๋จธ์‹ ๋Ÿฌ๋‹] Session 6. ์‚ฌ์ดํ‚ท๋Ÿฐ ์ž…๋ฌธ!

๊ฐœ์ธ์ •๋ณด

  • ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ
  • ํฌ๋Ÿผ
  • ๋กœ๊ทธ์ธ
์ƒ๋‹จ์œผ๋กœ

ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”

๋‹จ์ถ•ํ‚ค

๋‚ด ๋ธ”๋กœ๊ทธ

๋‚ด ๋ธ”๋กœ๊ทธ - ๊ด€๋ฆฌ์ž ํ™ˆ ์ „ํ™˜
Q
Q
์ƒˆ ๊ธ€ ์“ฐ๊ธฐ
W
W

๋ธ”๋กœ๊ทธ ๊ฒŒ์‹œ๊ธ€

๊ธ€ ์ˆ˜์ • (๊ถŒํ•œ ์žˆ๋Š” ๊ฒฝ์šฐ)
E
E
๋Œ“๊ธ€ ์˜์—ญ์œผ๋กœ ์ด๋™
C
C

๋ชจ๋“  ์˜์—ญ

์ด ํŽ˜์ด์ง€์˜ URL ๋ณต์‚ฌ
S
S
๋งจ ์œ„๋กœ ์ด๋™
T
T
ํ‹ฐ์Šคํ† ๋ฆฌ ํ™ˆ ์ด๋™
H
H
๋‹จ์ถ•ํ‚ค ์•ˆ๋‚ด
Shift + /
โ‡ง + /

* ๋‹จ์ถ•ํ‚ค๋Š” ํ•œ๊ธ€/์˜๋ฌธ ๋Œ€์†Œ๋ฌธ์ž๋กœ ์ด์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ํ‹ฐ์Šคํ† ๋ฆฌ ๊ธฐ๋ณธ ๋„๋ฉ”์ธ์—์„œ๋งŒ ๋™์ž‘ํ•ฉ๋‹ˆ๋‹ค.