๐Ÿฌ ML & Data/๐Ÿ“ฎ Reinforcement Learning

[MPC] 3. ์ƒํƒœ(state)์™€ ์ถœ๋ ฅ(output) ์˜ˆ์ธกํ•ด๋ณด๊ธฐ

darly213 2024. 3. 6. 16:16
728x90

Input / Output ์ •๋ฆฌ

  • $N_p$ : ์˜ˆ์ธกํ•˜๋ ค๋Š” ๋ฏธ๋ž˜ ์ถœ๋ ฅ ์ˆ˜
  • $N_c$ : ์˜ˆ์ธกํ•˜๋ ค๋Š” ๋ฏธ๋ž˜ ์ œ์–ด์ž…๋ ฅ ์ˆ˜
    • ๊ฒฝ๋กœ ์ถ”์ ์˜ ๊ฒฝ์šฐ, $N_p$๊ฐœ ์ ์„ tracking ํ•˜๊ธฐ ์œ„ํ•œ $N_c$๊ฐœ ์ œ์–ด ๋ช…๋ น...
  • Control Input
    • $\Delta u(k), \Delta u(k+1), \Delta u(k+2), \cdots, \Delta u(k + N_{c} - 1)$
  • Output
    • $y(k), y(k+1), \cdots, y(k+N_{p})$
    • $y(k) = Cx(k)$ ์ด๋ฏ€๋กœ $y(k+1) = Cx(k+1), y(k+2) = Cx(k+2), \cdots$ ๋กœ ํ‘œํ˜„ ๊ฐ€๋Šฅ
    • ๋”ฐ๋ผ์„œ ์˜ˆ์ธก state $x(k+1), x(k+2), \cdots, x(k+N_{p})$๋ฅผ ๊ตฌํ•˜๋ฉด ๋จ

 

State variable ๊ตฌํ•˜๊ธฐ


$$x(k+1) = Ax(k) + B\Delta u(k)$$$$\begin{matrix} x(k+2) &=& Ax(k+1) + B\Delta u(k+1) \ &=& A^{2}x(k) + AB\Delta u(k) + B\Delta u(k+1) \end{matrix}$$$$ \begin{matrix} x(k+3) &=& Ax(k+2) + B\Delta u(k+2) \ &=& A^{3}x(k) + A^{2}B\Delta u(k) + AB\Delta u(k+1) + B\Delta u(k+2) \end{matrix}$$$$\begin{matrix} x(k + N_{p}) &=& A^{N_p}x(k) + A^{N_{p-1}}B\Delta u(k) + A^{N_{p-2}}B\Delta u(k+1) + \cdots + A^{N_{p}- N_c}B\Delta u(k + N_{c}- 1) \end{matrix}$$

 

  • ์ผ ๋•Œ, $y(k) = Cx(k)$ ์ด๋ฏ€๋กœ $C$ ๋งŒ ๊ณฑํ•˜๋ฉด ์ถœ๋ ฅ
    $$y(k+1) = CAx(k) + CB\Delta u(k)$$$$\begin{matrix} y(k+2) &=& CAx(k+1) + CB\Delta u(k+1) \ &=& CA^{2}x(k) + CAB\Delta u(k) + CB\Delta u(k+1) \end{matrix}$$$$ \begin{matrix} y(k+3) &=& CAx(k+2) + CB\Delta u(k+2) \ &=& CA^{3}x(k) + CA^{2}B\Delta u(k) + CAB\Delta u(k+1) + CB\Delta u(k+2) \end{matrix}$$$$\begin{matrix} y(k + N_{p}) &=& CA^{N_p}x(k) + CA^{N_{p-1}}B\Delta u(k) + CA^{N_{p-2}}B\Delta u(k+1) + \cdots + CA^{N_{p}- N_c}B\Delta u(k + N_{c}- 1) \end{matrix}$$

 

  • $y(k + N_{p})= Y$, $CA^{N_{p}\cdots N_{p}-N_{c}} = F$ , $\Delta u(k + (0 \cdots N_{c}-1)) = \Delta U$ ๋กœ ๋†“์œผ๋ฉด

$$Y = Fx(k) + \Phi \Delta U$$ $$F = \begin{bmatrix}CA \ CA^{2}\ CA^{3}\ \vdots \ CA^{N_{p}- N_c} \end{bmatrix},
\Phi = \begin{bmatrix}
CB & 0 & 0 & \cdots & 0 \\
CAB & CB & 0 & \cdots & 0 \\
CA^{2}B & CAB & CB & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
CA^{N_{p}-1}B & CA^{N_{p}-2}B & CA^{N_{p}-3}B & \cdots & 0\end{bmatrix}$$

 

  • ํ˜„์žฌ ์ •๋ณด $x(k)$ ๋ฅผ ์•ˆ๋‹ค๋ฉด, ์ œ์–ด์ž…๋ ฅ $\Delta U$ ๋ฅผ ๋„ฃ์—ˆ์„ ๋•Œ ๋ฏธ๋ž˜ ์ถœ๋ ฅ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค!
  • $N_c$ ๊ฐœ ์ž…๋ ฅ์„ "design" ํ•ด์„œ $N_p$ ๊ฐœ ์ถœ๋ ฅ์„ ๋‚ผ ์ˆ˜ ์žˆ์Œ
  • ๋ฐ˜๋Œ€๋กœ ์–ด๋–ค ์ถœ๋ ฅ์„ ์œ„ํ•œ ์ž…๋ ฅ์„ ์„ค๊ณ„ํ•  ์ˆ˜๋„ ์žˆ์Œ
728x90